www.livit.ru
Контакты     |     RSS 2.0
Летательные аппараты » Самолетовождение » Полеты в особых условиях » Навигационные элементы ортодромической линии пути
 
Теория и расчет автожира
Обзор развития автожира
Теория ротора
Аэродинамический расчет
автожира
Устойчивость и балансировка
автожира
 
Строим сами летающие модели
Воздушные змеи
Воздушные шары
Модели планеров
Самолеты с резиновым мотором
Кордовые модели самолетов
Самолеты с электродвигателем
Модели вертолетов
Модели ракет
Организация работы кружка
Советы авиамоделисту
 
Самолетовождение
Сокращенные обозначения
и условные знаки,
принятые в самолетовождении
Основы авиационной картографии
Навигационные элементы полета
и их расчет
Безопасность самолетовождения.
Штурманская подготовка
и правила выполнения полета
Самолетовождение
с использованием угломерных
радиотехнических систем
Самолетовождение
с использованием
радиолокационных
и навигационных систем
Полеты в особых условиях
 
Партнеры
 
Наш опрос
Построили ли Вы что нибудь сами?

Модель самолета
Модель вертолета
Воздушный шар
Модель ракеты
Воздушного змея
Самолет
Вертолет
Автожир

 
Строительное оборудование
Тепловые Пушки от сайта бесплатных объявлений
 
Архив новостей
Февраль 2016 (294)
 
Статьи
» Основные систе­мы и агрегаты самолета
Все современные самолеты сходны по устройству, имеют одни и те же основные систе­мы и агрегаты. Крыло — главная часть самолета — создает подъем­ную силу, удерживающую его в воздухе. У разных само­летов крылья отличаются раз­мерами, формой и числом. Самолет с одним крылом на­зывают монопланом, а имеющий два крыла (одно над   другим) — бипланом. Конструкция крыла зави­сит от типа с ...

» Выбор режима полета на самолетах с ГТД и расчет рубежа возврата - Особенности самолетовождения высот ...
Современные самолеты с ГТД, применяемые в ГА, рассчитаны на экономичную эксплуатацию на больших высотах и больших скоростях полета. Самолетовождение высотно-скоростных самоле­тов имеет целый ряд особенностей, которые необходимо учитывать как; при подготовке к полету, так и в процессе самого полета. Самолетовождение на больших высотах (от 6000 м и выше) имеет следующие особенности:

» Резиномоторная модель са­молета класса В-1
Резиномоторная модель са­молета класса В-1 (рис. 31) может рассматриваться как шаг к спортивному совер­шенствованию в категории сво-боднолетающих моделей.

» Первые воздушные змеи
Воздушный змей сегодня не­редко воспринимается только как игрушка для детского раз­влечения. Но мало кто знает, что он имеет давнюю и интерес­ную историю. Первые воздушные змеи по­явились около четырех тысяч лет назад. Родина их — Китай. Самой распространенной была форма змея-дракона, что, воз­можно, и определило название «воздушный змей». Современ­ные воздушные змеи совершен­но не напоминаю ...

» Периодическое изменение угла взмаха лопасти и угла атаки сечения лопасти
Для выяснения махового движения па разных режимах и изменении угла β по ψ а так же для выяснения влияния махового движения на истинный угол атаки α сечения по вышеприведенным формулам сделан подсчет для ротора, имеющего следующие употребительные в практике параметры: γ=10; Θ=2˚

» Аэродинамический расчет автожира
Аэродинамический расчет автожира делается с целью определения его летных характеристик, как то:1)    горизонтальных скоростей - максимальных и минимальных, без снижения;2)    потолка;3)    скороподъемности;4)    скорости по траектории при крутом планировании.

» Длина дуги меридиана, экватора и параллели
Зная радиус Земли, можно рассчитать длину большого круга (меридиана и экватора): S = 2πR= 2·3,14·6371≈40000 км. Определив длину большого круга, можно рассчитать, чему рав­на длина дуги меридиана (экватора) в 1° или в 1ґ: 1 ° дуги меридиана (экватора) =   =   =111 км. 1ґ дуги меридиана (экватора) =   = 1,852 км = 1852 м.

» Определение значений тригонометрических функций углов
Значения синуса и косинуса данного угла α на НЛ-10М опре­деляются по шкалам 3 и 5, значения тангенса и котангенса — по шкалам 4 и 5. Чтобы определить синус и косинус данного угла, необходимо 90° шкалы 3 или треугольный индекс шкалы 4 установить на де­ление 100 шкалы 5 и с помощью риски визирки отсчитать против значения данного угла α шкалы 3 по шкале 5 искомое значение синуса (в ...

» Основные правила самолетовождения - Порядок выполнения маршрутного полета
Полеты самолетов гражданской авиации из одного пункта в другой выполняются по воздушным трассам, местным воздушным линиям, а вне трасс и воздушных линий — только по установлен­ным маршрутам. В основе успешного выполнения полетов лежит строгое соблю­дение установленных правил самолетовождения. Они обязывают экипаж самолета при выполнении любых полетов: 1)   сохранять ориентировку в течение вс ...

» Магнитные силы, действующие на стрелку компаса. Формула девиации
На стрелку компаса, установленного на самолете, в горизон­тальной плоскости одновременно оказывают действие шесть маг­нитных сил. 1.  Сила  λH, действующая в направлении магнитного   мери­диана. Источником этой силы является в основном горизонтальная составляющая магнитного поля Земли и в меньшей мере мягкое железо,  намагниченное  земным  магнетизмом. Направление  этой силы не зависит от к ...

» Спарка-тренажер
Как из­вестно, свой самый первый полет курсант выполняет не один, а вдвоем с инструктором на самолете с двойным управлением. Сначала управ­ляет инструктор, а обучаемый лишь слегка придерживает ручку и запоминает необхо­димые для полета манипуля­ции. И лишь на следующем этапе инициатива переходит к ученику. Однако инструктор и тут всегда начеку — в кри­тической ситуации он всегда может вмешат ...

» Предполетная штурманская подготовка
Предполетная штурманская подготовка организуется и про­водится командиром корабля перед каждым полетом с учетом конкретной навигационной обстановки и метеорологических ус­ловий, складывающихся непосредственно перед вылетом. В этот период каждый член экипажа выполняет по своей специально­сти перечень обязательных действий в соответствии с Инструк­цией по организации и технологии предполетной подгот ...

» Назначение и принцип устройства навигационной линейки НЛ-10М
Навигационная линейка НЛ-10М является счетным инструмен­том пилота и штурмана и предназначена для выполнения необхо­димых расчетов при подготовке к полету и в полете. Она устроена по принципу обычной счетной логарифмической линейки и позволяет заменить сложные математические действия над числами (умножение и деление) более простыми действиями — сложением и вычитанием отрезков шкал, выражающи ...

» Выход на исходный пункт маршрута
В гражданской авиации при полетах по трассам в качестве ИПМ берется аэродром вылета. В отдельных случаях при внетрассовых полетах ИПМ может быть ориентир, расположенный на не­котором расстоянии от аэродрома вылета. Полет по заданному маршруту начинается от ИПМ. Поэтому, прежде всего, необходимо обеспечить точный выход на него. Ма­невр выхода на ИПМ намечается с таким расчетом, чтобы самолет прошел ...

» Фюзеляжная модель самолета с резиновым двигателем
Фюзеляжная модель само­лета с резиновым двигателем (рис. 30) разработана в авиакружке, которым длительное время руководил автор. Она Посильна тем моделистам, кто имеет опыт авиационного мо­делирования.

» Девиация компаса и вариация
Компасным меридианом называется линия, вдоль кото­рой устанавливается магнитная стрелка компаса, находящегося на самолете (рис. 3. 3). Компасный и магнитный меридианы не совпа­дают. Девиацией компаса Δк называется угол, заключенный между северными направлениями магнитного и компасного мери­дианов. Она отсчитывается от магнитного меридиана к компасному к востоку (вправо) со знаком плюс, к зап ...

» Определение момента пролета радиостанции или ее траверза
Полет на радиостанцию заканчивается определением момента ее пролета. Как правило, этот момент необходимо ожидать. О приближении самолета к радиостанции можно су­дить по следующим призна­кам: а)   истекает       расчетное время прибытия на РНТ; б)   увеличивается   чувст­вительность    радиокомпаса, что   сопровождается   откло­нением стрелки   индикатора настройки вправо.

» Расчет времени и места начала снижения
Выход на аэродром посадки выполняется на указанной дис­петчером высоте круга или на заданном эшелоне. Время начала снижения рассчитывается с учетом заданной высоты выхода на аэродром. Рис. 5.6. Расчет времени набора высоты  

» Модель конструкции авиа­моделистов из г. Барановичи
Модель конструкции авиа­моделистов из г.  Барановичи (рис. 41). Интересную модель из пенопласта разработали бе­лорусские строители малой авиации. Облегчение крыла за счет сквозных отверстий позволило создать достаточно технологичную и легкую «бой­цовку».

» Движение лопастей
Каждая лопасть ротора при полете автожира имеет три вида движения: поступательное движение вместе со всей машиной со скоростью V, вращательное вокруг оси ротора при установившейся авторотации с постоянной угловой скоростью Ω, периодическое маховое движение относительно горизонтального шарнира ГШ.

» Уравнение махового движения лопасти
Уравнение махового движения напишем, исходя из условия равенства нулю суммы моментов всех сил лопасти относительно горизонтального шарнира, а именно (фиг. 59)

» Модель воздушного боя «Юниор»
Кордовая модель воздуш­ного боя «Юниор» (рис. 38) разработана под двигатель с рабочим объемом 1,5 см3. Вы­полнена она по схеме «летаю­щее крыло». Основной сило­вой элемент модели — кром­ка-лонжерон. Его выполняют следующим образом: из липы или сосны выстругивают рей­ку сечением 20x3 мм и дли­ной 750 мм, к боковым сто­ронам которой приклеивают еще три рейки сечением 10х 3 мм: с передней &mdas ...

» Включение и проверка работы системы «Трасса» перед полетом
Проверка работы системы «Трасса» может быть полной (про­водится техником РЭСОС один раз в течение трех суток с при­менением переносного контрольного пульта) или контрольной (проводится штурманом перед каждым полетом). В последнем случае для проверки используется имитатор сигналов доплеровской частоты, входящий в состав системы. Проверка осуществляется  на двух  точках  шкалы  указателя угла сноса ...

» Идея применения авторотирующего винта
Идея применения авторотирующего винта в качестве несущей поверхности и ее блестящее практическое осуществление, несмотря на ряд больших трудности, принадлежат испанскому инженеру Де-ля-Сиерва. Главная трудность при использовании авторотирующего винта как несущей поверхности заключалась в том, что в полете, когда плоскость вращения винта совпадает с направлением поступательной скорости или наклонна ...

» Учебная пилотажная мо­дель «Тренер»
Учебная пилотажная мо­дель «Тренер» (рис. 34) помо­жет освоить фигуры пилотаж­ного комплекса — прямые и обратные петли, поворот на горке и перевернутый полет (полет «на спине»). Конструктор данной модели В. Кибец при ее конструировании зало­жил такие основные требо­вания — наименьшая возмож­ная масса, относительная про­стота изготовления и хорошая технологичность. Изготовление модели н ...

» Схематическая модель са­молета
Схематическая модель са­молета (рис. 29) немного слож­нее описанных ранее. Прежде чем приступить к постройке Модели, необходимо сделать ее рабочий чертеж (в нату­ральную величину). Порядок Работы может быть такой. Фюзеляж делают из прямо­слойной сосновой или липо­вой рейки длиной 800 мм, сечением 12Х 10 мм, к хвосто­вой части сечение можно уменьшить до 8X6 мм.

» Авиационный моделизм
Из всех видов технического творчества самый распространенный — авиационный моделизм. Орга­низованно им в кружках, на станциях или в клубах юных техников, а также в домах пионеров занимается около четырехсот тысяч человек. Но немало и тех, кто строит авиационные модели самостоятельно. Примерно лет в десять, чуть, раньше или чуть позже, тысячи и тысячи мальчишек начинают кон­струировать авиамо ...

» Единицы измерения расстояний
В самолетовождении основными единицами измерения расстоя­ний являются километр и метр. В некоторых случаях в качестве единицы измерения расстояния применяется морская миля (ММ). В США и Англии для измерения расстояний, кроме морской мили, применяется английская статутная миля (AM) и фут. Морская ми­ля представляет собой длину дуги меридиана в 1'.

» Модель электролета наборной конструкции
Для тех, кто не имеет возможности построить модель из пенопласта, предлагаем из­готовить электролет наборной конструкции (рис. 46). Основной материал для крыла — бамбук. Из него де­лают кромки, нервюры и законцовки:   для   кромок — сечением 2x1,5 мм, для дру­гих частей—1x1 мм. Лон­жерон выстрагивают из сос­новой рейки сечением 1,5Х1,5 мм. Все соединения выполняют с помощью ниток ...

» Контроль пути по дальности с помощью боковых радиостанций
Контроль пути по дальности заключается в определении прой­денного от КО или оставшегося до заданного пункта расстояния. С помощью боковых радиостанций эта задача решается следую­щими способами: 1)   пеленгованием   боковой радиостанции и прокладкой ИПС на карте; 2)   выходом на предвычисленный КУР или МПР; 3)   выходом на траверз боковой радиостанции.

 
Наши друзья
Сделай сам своими руками tehnojuk.ru. Техножук от ветродвигателя до рентгеновского аппарата.
 
 Навигационные элементы ортодромической линии пути
Самолетовождение » Полеты в особых условиях  |   Просмотров: 7606  
 
Полет по ортодромической линии пути можно выполнить при наличии на самолете специального навигационного оборудования, измеряющего ортодромический курс, отсчет которого ведется отно­сительно условного направления или опорного меридиана.
В зависимости от навигационно-пилотажного комплекса само­лета применяются различные способы отсчета ортодромических пу­тевых углов и курсов самолета, выбор которых в основном зависит от принятой системы координат счисления места самолета на эта­пах маршрута.
В практике гражданской авиации при полетах по ортодромии применяются две системы координат счисления места самолета: главноортодромическая и этапноортодромическая.
Главноортодромичекая система координат применяется при полетах на самолетах, оборудованных точными курсовыми системами и системами для автоматического измерения угла сноса, путевой скорости и системами счисления пути. В этом случае при подготовке к полету на карту наносят главную и част­ные ортодромии (рис. 23.2). Последние представляют собой ортодромические этапы маршрута, а главная ортодромия используется как направление, от которого ведется отсчет ортодромических путе­вых углов и курсов самолета, и является осью Y ортодромической системы координат. Принятую систему отсчета курсов сохраняют на всем протяжении главной ортодромии. Это исключает частый переход на новое направление отсчета ортодромического курса. Курсовая система в этом случае работает более стабильно. Точ­ность измерения курса для автоматического счисления пути повы­шается. В этой системе координат текущие координаты места са­молета (X и Y) выдаются приборами относительно главной орто­дромии.
Этапноортодромическая система координат обычно применяется при полетах на самолетах, оборудованных ГПК и КС средней точности. При счислении пути в этой системе координат путевые углы и курсы самолета отсчитываются отно­сительно опорных меридианов каждого участка маршрута (рис. 23.3). В этапноортодромической системе координат ось каждый раз совмещается с линией заданного пути. Так как частная ортодро­мия является этапом маршрута, координаты места самолета (ЛБУ и Sпр или Sост) указывают его положение относительно заданного маршрута. Навигационными элементами ортодромической линии пути являются (рис. 23.4):
1. Главная ортодромия — ортодромия, относительно которой ведется отсчет ортодромического курса и счисление пути.
На полетных картах видоизмененной поликонической проекции главная ортодромия прокладывается в виде прямой линии в ме­ридиональном направлении без ограничений, а в широтном на­правлении — до 1200 км. Поэтому для трасс большой протяжен­ности необходимо выбирать несколько главных ортодромий.

 Навигационные элементы ортодромической линии

На картах равноуголь­ной косой цилиндрической проекции ортодромию в виде прямой линии мож­но прокладывать на рас­стояние до 2500 км при отклонении           изломов маршрута от главной ор­тодромии до 200 км.
2.  Частная     орто­дромия — это   ортодро­мия этапа маршрута.
3.  Опорный   мери­диан — меридиан,  отно­сительно которого   ведет­ся    отсчет   ортодромических путевых углов и кур­сов самолета.  Он  может совпадать с истинным или магнитным    меридианом. Расстояние  между   опор­ными     меридианами    не должно            превышать 1200 км. На карте они вы­деляются красным цветом.
4. Азимут главной ортодромии      (А)   — угол,   заключенный меж­ду северным направлени­ем   истинного  меридиана и направлением   главной ортодромии,    измеренный в начальной    точке    ор­тодромии.
5.      Ортодромиче­ский   путевой угол (ОПУ) — угол, заключенный между северным направлением опорного меридиана и линией заданного пути. Измерение орто-дромических путевых углов может производиться относительно истинного или магнитного опорного меридианов. Соответствен­но с этим ортодромический путевой угол может называться ортодромическим заданным истинным путевым углом (ОЗИПУ) или ортодромическим заданным магнитным путевым углом (ОЗМПУ).
6. Ортодромический курс (ОК) — угол, заключенный между северным направлением опорного меридиана и направлением продольной оси самолета. Ортодромический курс может быть истинным (ОИК) или магнитным (ОМК) в зависимости от меридиана, относительно которого он измеряется.
7.  Угол разворота (УР) — угол, на который изменяется на­правление   пути   от   ППМ.
8.  Угол    пересечения   (УП) — угол между направлением главной ортодромии и ЛЗП.
Углы разворота и углы пересечения измеряются на карте при помощи транспортира.
Перечисленные навигационные элементы ортодромической ли­нии пути используются в штурманских расчетах при полетах по ортодромическим направлениям.

Распечатать ..

 
Другие новости по теме:

  • Способы определения ортодромических путевых углов
  • Путевые углы и способы их определения
  • Зависимость между ортодромическим, истинным и магнитным курсами
  • Полеты по ортодромии - Необходимость полета по ортодромии
  • Курсы самолета


  • Rambler's Top100
    © 2009