Warning: fopen(/var/www/fastuser/data/www/livit.ru/engine/cache/related_422.tmp): failed to open stream: пФЛБЪБОП Ч ДПУФХРЕ in /var/www/fastuser/data/www/livit.ru/engine/modules/functions.php on line 337 Warning: fwrite() expects parameter 1 to be resource, boolean given in /var/www/fastuser/data/www/livit.ru/engine/modules/functions.php on line 338 Warning: fclose() expects parameter 1 to be resource, boolean given in /var/www/fastuser/data/www/livit.ru/engine/modules/functions.php on line 339 Компенсация радиодевиации » Летательные аппараты - Авиационный моделизм и самолетовождение
www.livit.ru
Контакты     |     RSS 2.0
Летательные аппараты » Самолетовождение » Использование угломерных радиотехнических систем » Компенсация радиодевиации
 
Теория и расчет автожира
Обзор развития автожира
Теория ротора
Аэродинамический расчет
автожира
Устойчивость и балансировка
автожира
 
Строим сами летающие модели
Воздушные змеи
Воздушные шары
Модели планеров
Самолеты с резиновым мотором
Кордовые модели самолетов
Самолеты с электродвигателем
Модели вертолетов
Модели ракет
Организация работы кружка
Советы авиамоделисту
 
Самолетовождение
Сокращенные обозначения
и условные знаки,
принятые в самолетовождении
Основы авиационной картографии
Навигационные элементы полета
и их расчет
Безопасность самолетовождения.
Штурманская подготовка
и правила выполнения полета
Самолетовождение
с использованием угломерных
радиотехнических систем
Самолетовождение
с использованием
радиолокационных
и навигационных систем
Полеты в особых условиях
 
Партнеры
 
Наш опрос
Построили ли Вы что нибудь сами?

Модель самолета
Модель вертолета
Воздушный шар
Модель ракеты
Воздушного змея
Самолет
Вертолет
Автожир

 
Строительное оборудование
Тепловые Пушки от сайта бесплатных объявлений
 
Архив новостей
Февраль 2016 (294)
 
Статьи
» Уравнение нулевого крутящего момента
Средний крутящий момент ротора равен:  

» Выход на исходный пункт маршрута
В гражданской авиации при полетах по трассам в качестве ИПМ берется аэродром вылета. В отдельных случаях при внетрассовых полетах ИПМ может быть ориентир, расположенный на не­котором расстоянии от аэродрома вылета. Полет по заданному маршруту начинается от ИПМ. Поэтому, прежде всего, необходимо обеспечить точный выход на него. Ма­невр выхода на ИПМ намечается с таким расчетом, чтобы самолет прошел ...

» Кордовая модель самолета с электродвигателем
Предлагаем изготовить не­сложную кордовую модель са­молета с электродвигателем (рис. 45). Из куска упаковочного пенопласта толщиной 15 мм вы­резают крыло. Если такого куска не оказалось, его склеи­вают из отдельных элементов. Цельное крыло обязатель­но облегчают, вырезая в обеих консолях широкие отверстия, и укрепляют нервюрами. Во внешнем конце крыла заклеи­вают свинцовый грузик мас­сой 5 г, пр ...

» Компоненты скорости воздуха относительно плоскости вращения ротора
Поступательную скорость V ротора, имеющего угол атаки i°, можно разложить на две составляющие (фиг. 52); нормальную к оси ротора, лежа­щую в плоскости вращения V cos  i и параллельную оси ротора - V sin i. Помимо скорости V воздух относительно плоскости вращения ротора имеет индуктивную скорость (скорость, вызванную ротором) v. Направление индуктивной скорости можно приближенно установить, исходя ...

» Применение РСБН-2 в полете
Угломерно-дальномерная система может быть применена в по­лете на любом участке трассы в зоне ее действия. Используется она по плану, намеченному в период подготовки к полету. В этом плане указывается, в каком режиме необходимо использовать си­стему на том или другом участке трассы и для решения какой навигационной задачи ее следует применять. Рассмотрим методы использования системы и порядок рабо­ ...

» Контроль и исправление пути
При выполнении полета вследствие изменения ветра, неточного выдерживания заданного режима полета и ошибок в навигацион­ных измерениях и расчетах самолет может уклониться от ЛЗП и выйти на заданные пункты маршрута в неназначенное время. В целях точного следования по заданной трассе (маршруту) и точного по времени выхода на контрольные ориентиры, поворот­ные пункты и аэродром посадки, экипаж в проце ...

» Игры и соревнования
Са­мые простые соревнования — на время полета. Тут может быть и одновременный старт всех шаров и старт по очереди (по жребию). Выигрывает та команда, у которой шар доль­ше продержится в воздухе.

» Особенности самолетовождения над безориентирной местностью
Условия самолетовождения    над    безориентирной местностью. Безориентирной называется местность с однообразным фо­ном. Это — тайга, степь, пустыня, тундра, большие лесные мас­сивы, а также малообследованные районы, для которых нет точ­ных карт. Самолетовождение над безориентирной местностью характеризуется следующими условиями:

» Определение путевой скорости, пройденного расстояния и времени полета подсчетом в уме
Путевая скорость может быть определена подсчетом в уме следующими способами: 1.   Путем определения расстояния, проходимого самолетом за одну минуту, с последующим расчетом путевой скорости. Пример. S=88 км; t=11 мин. Определить путевую скорость. Решение.    1. Находим путь самолета, проходимый    за    одну    минуту: S=88:11=6 км. 2.   Определяем путевую скорость самолета:  W==8—60=480 км/ ...

» Решение навигационного треугольника скоростей
Решить навигационный треугольник скоростей — это значит по его известным элементам найти неизвестные. Решение нави­гационного треугольника скоростей можно осуществить: 1)   графически (на бумаге); 2) с помощью навигационной линейки, навигационного  расчетчика или ветрочета; 3)   приближенно подсчетом в уме.

» Идея применения авторотирующего винта
Идея применения авторотирующего винта в качестве несущей поверхности и ее блестящее практическое осуществление, несмотря на ряд больших трудности, принадлежат испанскому инженеру Де-ля-Сиерва. Главная трудность при использовании авторотирующего винта как несущей поверхности заключалась в том, что в полете, когда плоскость вращения винта совпадает с направлением поступательной скорости или наклонна ...

» Ракетомодельный спорт
В ракетомодельном спорте, также как и в авиамодельном, правила соревнований вырабатывает соответствующая меж­дународная федерация. Нацио­нальные федерации, принимая свой спортивный кодекс, стара­ются дублировать международ­ные правила — раздел «Косми­ческие модели» кодекса ФАИ. Но каждая страна вправе внес­ти какие-либо нововведения, уточнения, не изменяя при этом основополагающие требования ...

» Электролеты
В настоящее время среди авиамоделистов нашей страны все большее распространение получают модели самолетов с электродвигателем — электролеты. Их строят как для свободного полета, так в кор­довом варианте. И если кон­струирование свободнолетающих электролетов дело не­простое, то изготовление кор­довых «электричек» по силам многим любителям малой авиа­ции. Кордовые авиамодели с электродвигателе ...

» Модель конструкции Г. Без­рука
Модель конструкции Г. Без­рука (рис. 37). С этой моделью ее создатель успешно высту­пал на соревнованиях по воз­душному бою во Всероссий­ском пионерском лагере «Ор­ленок». Простота в изготовле­нии, неплохая скорость и ма­невренность — вот главные ка­чества модели.

» Географические координаты
Географические координаты — это угловые величины, которые определяют положение данной точки на земной поверхности. Гео­графическими координатами являются широта и долгота места (рис. 1.3).  

» Курсы самолета девиация магнитных компасов
Для определения и выдерживания курса самолета наиболее ши­рокое применение находят магнитные компасы, принцип действия которых основан на использовании магнитного поля Земли.Земля представляет собой большой естественный магнит, вокруг которого существует магнитное поле. Магнитные полюсы Земли не совпадают с географическими и располагаются не на поверхности Земли, а на некоторой глубине. Условно пр ...

» Предполетная проверка НИ-50БМ
Для проверки НИ-50БМ перед полетом необходимо: 1.  Включить электропитание   прибора   по  переменному  и  по­стоянному току. 2.  Включить и подготовить к работе ГИК.    Показания ГИК после согласования и показания автомата курса навигационного индикатора не должны отличаться более чем на ±2°. 3.  Установить на автомате курса и задатчике ветра МУК=МК самолета. 4.  Ввести в задатчик ветра направлен ...

» Игры и соревнования. Воздушный «почтальон»
С воз­душными змеями в пионерском лагере можно проводить раз­нообразные игры и соревнова­ния — на скорость сборки и за­пуска на леере определенной длины, на высоту подъема. Особенно большой интерес вызывает запуск воздушных змеев с применением «почталь­онов». Воздушные «почталь­оны»— приспособления, кото­рые под напором ветра сколь­зят вверх по лееру. Такой лист скользит по лееру вверх ...

» Ракета— летательный аппа­рат тяжелее воздуха
Ракета— летательный аппа­рат тяжелее воздуха, подъем­ная сила которого возникает по принципу реактивного дви­жения. Этот принцип заклю­чается в отталкивании ра­кеты от массы струи газов, образованных при сгорании топлива и истекающих из двигателя. Своим рождением первые ракеты обязаны изобретению пороха. Но в те далекие вре­мена ракеты служили лишь для фейерверков. Потом они нашли применение ...

» Модель ракеты «Родник»
Модель ракеты «Родник» (рис. 60) разработана в пио­нерском лагере с таким же на­званием для сброса вымпелов и листовок на праздниках. Корпус склеивают на оправке диаметром 70 мм из трех слоев бумаги. В донной части закрепляют обойму из пенопласта под двигатель МРД 20-10-4. Если же пред­полагается применение других МРД, то лучше вклеить ста­кан для сменных моторных отсеков, в которые устанавли­вают ...

» Способы определения ортодромических путевых углов
В практике ортодромические путевые углы по участкам марш­рута (см. рис. 23.4) могут определяться одним из следующих спо­собов: 1.  Учетом  угла   разворота. Для применения этого способа вначале определяют ортодромический путевой угол первого этапа маршрута, равный азимуту ча­стной ортодромии, измеренный в точке вылета самолета. Последу­ющие путевые углы определяются по предыдущему с учетом угла ра ...

» Сокращенные обозначения и условные знаки, принятые в самолетовождении
Точки и линииМС — место   самолета ИПМ — исходный   пункт   маршрута ППМ — поворотный   пункт   маршрута КО — контрольный   ориентир КЭ — контрольный   этап ЛЗП — линия   заданного   пути ЛФП — линия фактического пути АЛП — астрономическая   линия   положения РНТ — радионавигационная   точка ОПРС — отдельная   приводная   радиостанция РСБ ...

» Двухмоторный электролет
Двухмоторный электролет был создан в результате даль­нейшего  развития  моделей с электродвигателем. Демон­страционные полеты такого аппарата вызывают большой интерес в любой аудитории, будь то школа или пионерский лагерь; они хорошо смотрятся на слетах, фестивалях и празд­никах. Двухмоторная схема модели позволяет повысить ее энерговооруженность, добить­ся надежности полета на от­крытом воздухе.

» Поликонические проекции
По принципу построения поликонические проекции незначи­тельно отличаются от конических. Они являются дальнейшим усо­вершенствованием конических проекций. В поликонических проекциях земная поверхность переносится на боковые поверхности нескольких конусов, касательных к парал­лелям или секущих земной шар по заданным параллелям. На по­верхность каждого конуса переносится небольшой шаровой пояс земной ...

» Кордовая учебно-тренировочная модель самолета
Кордовая учебно-трениро­вочная модель (рис. 33). По­стройка именно такой модели наиболее оправдана для даль­нейшего знакомства с катего­рией кордовых моделей. Работу над моделью мож­но начать с изготовления ра­бочего чертежа.

» Петля Нестерова
Задача участников в этом соревнова нии — заставить модель вы­полнить петлю Нестерова Судьи, наблюдая за полетами сбоку, оценивают эту фигуру выполненную каждой моделью, в очках. Так, четкая и ровная петля, похожая на окруж ность, оценивается в 5 очков. петля с зависанием, вытянутая,— в 4 очка и т. д. Участник, набравший наибольшую сумму очков за три полета, признается победителем.

» Кордовая модель самолета «Универсал»
Универсальную кордовую модель самолета (рис. 42) разработали юные техники Ти­мирязевского района Москвы. Их модель воздушного боя после небольших дополнений становится пилотажной. В ней удачно сочетаются и маневрен­ность и устойчивость, что позволяет вести воздушный бой и выполнять фигуры пило­тажного комплекса. В то же время эту модель не отнесешь к категории сложных, она вполне доступна для изго ...

» Игры и соревнования с моде­лями планеров
Соревнования — это итог ра­боты каждого авиамоделиста. В них проверяется не толь­ко качество моделей, но и умение их конструкторов ис­пользовать полученные знания. В практике авиационного мо­делизма широко известны не только соревнования, но и игры, особенно с бумажными моделями. Перед началом стартов все участвующие в них планеры необходимо над­писать — сделать опознава­тельные знаки. ...

» Перевод морских и английских миль в километры и обратно
Перевод морских (ММ) и английских (AM) миль в километры и обратно производится по формулам: Sкм= S (ММ)·1,852;    Sкм = S(AM)·1,6;      S (ММ) = Sкм :1,852; S(AM) = Sкм:1,6.  Чтобы перевести морские или английские мили в километры, на НЛ-10М необходимо деление 100 или 1000 шкалы 14 установить на число морских или английских миль по шкале 15 и соответ­ственно против индекса ММ или AM .отсчитать по ...

» Компенсация радиодевиации
Радиодевиация компенсируется в следующем порядке: 1.  Выключить радиокомпас и отсоединить компенсатор от бло­ка рамки. 2.  Снять скобу с указателя радиодевиаций.

 
Наши друзья
Сделай сам своими руками tehnojuk.ru. Техножук от ветродвигателя до рентгеновского аппарата.
 
 Компенсация радиодевиации
Самолетовождение » Использование угломерных радиотехнических систем  |   Просмотров: 9363  
 
Радиодевиация компенсируется в следующем порядке:
1.  Выключить радиокомпас и отсоединить компенсатор от бло­ка рамки.
2.  Снять скобу с указателя радиодевиаций.

Таблица 14. 2
Таблица компенсации радиодевиации
 
ОРК    ΔР    Показания стрелки-указателя после циклов компенсации      
   
     1    2    3    4      
0    0    0    0    0    0      
345    —16    —5    —9    —13    —16      
15    + 15    + 3    + 7    +11    + 15      
330    —19    —5    —10    —15    —19      
30    + 18    +3    + 8    + 13     + 18      
315    —16    —5    —9    —13    —16      
45    + 15    + 3    + 8    + 12    + 15      
300    —11    —4    —7    —9    —11      
60    + 10    +2    + 5    + 8    + 10      
285    —6    —3    —4    — 0    —6      
75    + 5    +2    +3    +4    + 5      
270    0    0    0    0    0      
90    0    0    0    0    0      
255    + 5    + 2    +3    +4    +5      
105    —6    — 3    — 4    — 5    —6      
240    + 11    +2    + 5    + 8    + 11      
120    — 10    — 4    — 6    — 8    — 10      
225    + 15    +3    +8    + 12    + 15      
135    — 14    — 4    —8    —12    —14      
210    + 18    +3    +8    + 13    + 18      
150    —17    —5    —10    —14    —17      
195    + 13    +3    + 6    + 10    + 13      
165    —13    — 4    —7    —10    —13      
180    0    0    0    0    0     

3.  Составить таблицу компенсации радиодевиации (табл. 14. 2). Она составляется для избежания опасных натяжений лекала. Так как радиодевиация может достигать 15—20°, то ее вводят за три-четыре приема, последовательно увеличивая прогиб ленты лекала.
Для избежания опасных натяжений лекала в компенсатор вводят поочередно радиодевиацию положительную и отрицательную в такой последовательности: 0, 345, 15, 330, 30, 315, 45, 300, 60, 285, 75, 270, 90, 255, 105, 240, 120, 225, 135, 210, 150, 195, 165, 180°.
4.  Приступить к нанесению радиодевиации на компенсатор, для чего необходимо поворотом диска компенсатора за поводок совме­стить нуль шкалы радиодевиации с делением ОРК=0° и, удержи­вая его в этом положении, с помощью регулировочного винта, рас­положенного против деления ОРК=0°, установить указатель радиодевиации на 0° по шкале радиодевиации.
5.  Установить диск компенсатора на ОРК=345° и вращением регулировочного винта против этого деления переместить стрелку-указатель радиодевиации на значение, указанное в первом цикле таблицы компенсации.
6.  Таким же образом нанести радиодевиацию первого цикла на остальных ОРК, соблюдая последовательность, указанную в таб­лице.
7.  В таком же порядке выполнить второй, третий и четвертый циклы компенсации.
8.   Проверить точность нанесения радиодевиации на компенса­тор, для чего последовательно устанавливать диск компенсатора нулем шкалы радиодевиации на каждый из 24 ОРК по шкале, при этом стрелка-указатель должна показать величину и знак радио­девиации согласно протоколу.
9.  Если на каком-либо ОРК радиодевиация нанесена с ошибкой, то необходимо вращением соответствующего винта довести ее до требуемого   значения.   После этого необходимо   снова   проверить правильность отклонения указателя на всех ОРК, так как иногда доведение радиодевиации до требуемой величины на одном каком-либо ОРК вызывает появление ошибок в установленной величине радиодевиации на другом ОРК.
10.  Подсоединить к компенсатору провода сельсинной  переда­чи, включить радиокомпас и, вращая диск компенсатора,  наблю­дать за вращением стрелок указателей КУР. Стрелки указателей должны вращаться плавно без рывков и заеданий.
11.  Если стрелки указателей перемещаются без рывков, устано­вить компенсатор в блок рамки, после чего приступить к опреде­лению остаточной радиодевиации.

Распечатать ..

 
Другие новости по теме:

  • Определение остаточной радиодевиации и составление графика радиодевиации
  • Выполнение радиодевиационных работ
  • Подготовка к проведению радиодевиационных работ
  • Проверка правильности остаточной радиодевиации в полете
  • Определение радиодевиации


  • Rambler's Top100
    © 2009