www.livit.ru
Контакты     |     RSS 2.0
Летательные аппараты » Самолетовождение » Навигационные элементы полета и их расчет » Навигационный треугольник скоростей, его элементы и их взаимозависимость
 
Теория и расчет автожира
Обзор развития автожира
Теория ротора
Аэродинамический расчет
автожира
Устойчивость и балансировка
автожира
 
Строим сами летающие модели
Воздушные змеи
Воздушные шары
Модели планеров
Самолеты с резиновым мотором
Кордовые модели самолетов
Самолеты с электродвигателем
Модели вертолетов
Модели ракет
Организация работы кружка
Советы авиамоделисту
 
Самолетовождение
Сокращенные обозначения
и условные знаки,
принятые в самолетовождении
Основы авиационной картографии
Навигационные элементы полета
и их расчет
Безопасность самолетовождения.
Штурманская подготовка
и правила выполнения полета
Самолетовождение
с использованием угломерных
радиотехнических систем
Самолетовождение
с использованием
радиолокационных
и навигационных систем
Полеты в особых условиях
 
Партнеры
 
Наш опрос
Построили ли Вы что нибудь сами?

Модель самолета
Модель вертолета
Воздушный шар
Модель ракеты
Воздушного змея
Самолет
Вертолет
Автожир

 
Строительное оборудование
Тепловые Пушки от сайта бесплатных объявлений
 
Архив новостей
Февраль 2016 (294)
 
Статьи
» Идея применения авторотирующего винта
Идея применения авторотирующего винта в качестве несущей поверхности и ее блестящее практическое осуществление, несмотря на ряд больших трудности, принадлежат испанскому инженеру Де-ля-Сиерва. Главная трудность при использовании авторотирующего винта как несущей поверхности заключалась в том, что в полете, когда плоскость вращения винта совпадает с направлением поступательной скорости или наклонна ...

» Основные сведения о РСБН-2
Радиотехническая система РСБН-2 является неавтономной системой самолетовождения. Она состоит из наземного и самолетного оборудования. Система работает на ультракоротких волнах, поэтому обмен сигналами между самолетом и наземным маяком возможен лишь на дальностях прямой видимости, которая в основном зависит от высоты полета (табл. 18.1) и может быть определена по формуле: Д км=3,57 √Нм.

» Игры и соревнования
Са­мые простые соревнования — на время полета. Тут может быть и одновременный старт всех шаров и старт по очереди (по жребию). Выигрывает та команда, у которой шар доль­ше продержится в воздухе.

» Расчет приборной воздушной скорости для однострелочного указателя скорости
Приборная воздушная скорость рассчитывается для того, что­бы по указателю скорости выдерживать в полете, если это требу­ется, заданную истинную воздушную скорость. Приборная воздуш­ная скорость рассчитывается по формуле Vпр = Vи— (± ΔVм) — (± ΔV).

» Змей-вертушка
Змей-вертушка (рис. 3). В основе полета этого змея «эф­фект Магнуса». Что это такое? В 1852 году немецкий ученый Г. Магнус обнаружил эффект обтекания воздухом вращаю­щейся трубы: воздушная струя, обтекающая трубу поперек ее оси, отклоняется в направлении вращения. Если разрезать тру­бу (цилиндр) вдоль оси попо­лам и сместить обе половинки друг относительно друга, полу­чится вертушка. Цилиндр будет ...

» Корректировка показаний КС-6 для отсчета курса по магнитному меридиану аэродрома посадки
В тех случаях, когда полет выполняется с ортодромическим кур­сом на аэродром, где горизонтальная составляющая геомагнитно­го поля мала, необходимо до начала снижения с эшелона уста­новить на УШ курс полета самолета относительно магнитного ме­ридиана аэродрома посадки. Для этой цели в режиме «ГПК» уста­навливают УШ на отсчет:ОМКа = МКГ + (± Δм.м.с) + (λа—λм.с) sin φcp ...

» Особенности самолетовождения в ночных условиях
Условия самолетовождения ночью. Ночным называется по­лет, выполняемый в период от захода до восхода Солнца. Самоле­товождение ночью характеризуется: 1. Ограниченными возможностями ведения визуальной ориентировки вследствие плохой видимости неосвещенных ориентиров, Которая зависит от высоты полета (табл; 21.3).

» Перевод морских и английских миль в километры и обратно
Перевод морских (ММ) и английских (AM) миль в километры и обратно производится по формулам: Sкм= S (ММ)·1,852;    Sкм = S(AM)·1,6;      S (ММ) = Sкм :1,852; S(AM) = Sкм:1,6.  Чтобы перевести морские или английские мили в километры, на НЛ-10М необходимо деление 100 или 1000 шкалы 14 установить на число морских или английских миль по шкале 15 и соответ­ственно против индекса ММ или AM .отсчитать по ...

» Штурманский контроль готовности экипажа к полету
Контроль готовности экипажа к полету после его предполетной штурманской подготовки осуществляют штурманы (авиаотряда, авиаэскадрильи, дежурные штурманы аэропортов), а при их отсут­ствии — диспетчеры АДП аэропортов вылета. В летных учебных заведениях готовность экипажа к полету кон­тролируют штурманы авиаэскадрилий (авиаотрядов) и руководи­тель полетов. Флаг-штурман летного учебного заведения ...

» Использование КС-6 в полете
Курсовая система позволяет выполнять полеты с локсодроми­ческими и ортодромическими путевыми углами. Полеты по локсо­дромии рекомендуются в умеренном и тропическом поясах при ус­ловии, что участки маршрута имеют протяженность не более 5° по долготе. В этом случае средний ЗМПУ участка должен отличаться от значений ЗМПУ на концах участка не более чем на 2°. Если эта разность более 2°, участок должен ...

» Использование РПСН-2 в режиме «Скорость»
Режим «Скорость» предназначен для определения путевой ско­рости самолета. Она определяется по времени движения ориенти­ра между метками дальности на экране индикатора. В РПСН-2 в режиме «Скорость» автоматически включается масштаб развертки 50 км и регулируемая задержка запуска раз­вертки в диапазоне 60—150 км. Это позволяет выбирать ориенти­ры для определения путевой скорости на достаточно б ...

» Кордовая модель самолета с электродвигателем
Предлагаем изготовить не­сложную кордовую модель са­молета с электродвигателем (рис. 45). Из куска упаковочного пенопласта толщиной 15 мм вы­резают крыло. Если такого куска не оказалось, его склеи­вают из отдельных элементов. Цельное крыло обязатель­но облегчают, вырезая в обеих консолях широкие отверстия, и укрепляют нервюрами. Во внешнем конце крыла заклеи­вают свинцовый грузик мас­сой 5 г, пр ...

» Основные радионавигационные элементы
Основными радионавигационными элементами при использо­вании радиокомпаса являются: курсовой угол радиостанции (КУР); отсчет радиокомпаса (ОРК); радиодевиация (Δр); пеленг радиостанции (ПР); пеленг самолета (ПС).

» Способы определения ортодромических путевых углов
В практике ортодромические путевые углы по участкам марш­рута (см. рис. 23.4) могут определяться одним из следующих спо­собов: 1.  Учетом  угла   разворота. Для применения этого способа вначале определяют ортодромический путевой угол первого этапа маршрута, равный азимуту ча­стной ортодромии, измеренный в точке вылета самолета. Последу­ющие путевые углы определяются по предыдущему с учетом угла ра ...

» Несложный пилотажный змей
Совсем недавно, в конце 70-х годов, древние летательные ап­параты получили дальнейшее развитие — появились пило­тажные змеи. Первые, не всег­да удачные экспериментальные полеты помогли разработать оп­тимальные размеры и форму, изучить технику управления та­ким змеем. Как и во всех моде­лях среди акробатических змеев есть как простые, так и слож­ные конструкции. Для начала рекомендуем построи ...

» Ортодромия и локсодромия
Путь самолета между двумя за­данными точками на карте может быть проложен по ортодромии или локсодромии. Выбор способа прок­ладки пути зависит от оснащенности самолета навигационным обору­дованием. Каждая из указанных  линий пути имеет определенные свойства. Ортодромией называется дуга большого круга, являющаяся кратчайшим расстоянием между двумя точками А и В на поверх­ности земного шара (рис. ...

» Полет на радиостанцию
Полет на радиостанцию может быть выполнен пассивным или активным способом. В свою очередь активный полет на радиостанцию может быть выполнен одним из следующих способов; 1)   с выходом на ЛЗП; 2)   с выходом в КПМ (ППМ); 3)   с любого направления подбором курса следования. Пеленги, определяемые при полете на  радиостанцию,  можно использовать для контроля пути по направлению.

» Ракета— летательный аппа­рат тяжелее воздуха
Ракета— летательный аппа­рат тяжелее воздуха, подъем­ная сила которого возникает по принципу реактивного дви­жения. Этот принцип заклю­чается в отталкивании ра­кеты от массы струи газов, образованных при сгорании топлива и истекающих из двигателя. Своим рождением первые ракеты обязаны изобретению пороха. Но в те далекие вре­мена ракеты служили лишь для фейерверков. Потом они нашли применение ...

» Полет на радиопеленгатор
При использовании УКВ радиопеленгаторов для контроля пути по направлению запрашиваются в телефонном режиме обратные пеленги (ОП) словами: «Дайте обратный пеленг».При использовании KB радиопеленгаторов для контроля пути по направлению запрашиваются пеленги в телеграфном режиме кодовым выражением ЩДМ, которое означает: «Сообщите магнит­ный курс, с которым я должен направиться к вам при отсутст­вии в ...

» Самолетовождение с использованием наземных радиопеленгаторов - Задачи самолетовождения, решаемые с ...
Наземный радиопеленгатор — это специальное прием­ное радиотехническое устройство, позволяющее определять нап­равление на самолет, на котором работает передающая радиостан­ция. Данные пеленгации наземного радиопеленгатора могут быть использованы только при наличии двусторонней связи экипажа самолета с землей.

» Определение навигационных элементов на контрольном этапе
Для ведения контроля пути нужно знать фактическую путевую скорость и угол сноса. При отсутствии на самолете навигацион­ных средств для автоматического измерения этих элементов послед­ние могут быть определены на контрольном этапе. Длина контроль­ного этапа берется не менее 50—70 км. Его входной и выходной ориентиры выбираются с учетом надежности их опознавания с вы­соты полета. На контрольно ...

» Модель самолета из пено­пласта
Модель самолета из пено­пласта (рис. 28) разработана авиамоделистами СЮТ г. Элек­тростали. За основу взят чер­теж модели самолета «Вилга-2» и полумакет чехословацких мо­делистов, изготовленный из бальзы. Строительный материал для этого микросамоле­та — пенопласт (упаковочный или ПС-4-40).

» Проверка работоспособности самолетного оборудования РСБН-2 и калибровка шкал ППДА
Проверка работоспособности самолетного оборудования РСБН-2 выполняется в таком порядке: 1.  Произвести внешний осмотр  щитков управления   и   прибо­ров системы, установленных на самолете. 2.  Убедиться,   что горизонтальная   и    вертикальная    стрелки КППМ находятся в нулевом положении. Если они отклонены от нулевого положения, техник по РЭСОС   с помощью винтов с над­писью «К» и «Г» на КППМ д ...

» Схематическая модель пла­нера разработана ал­ма-атинскими авиамоделиста­ми
Схематическая модель пла­нера (рис. 23) разработана ал­ма-атинскими авиамоделиста­ми. Хорошие летные качества этой «схематички» заставили конструкторов малой авиации оборудовать миниатюрный па­ритель фитильным приспособ­лением для принудительной по­садки. Постройку такой «схематич­ки» начинают с крыла. Прежде всего заготовки кромок изго­тавливают с помощью спе­циально изготовленного при­способлени ...

» Планирование и вертикальный спуск автожира
Автожир, если он соответствующим образом сбалансирован, может совершать крутые планирующие спуски при больших углах атаки, так как для него, в отличие от самолета, не существует критического угла, при котором начинаются срыв струй на крыле и резкое уменьшение подъемной силы, и нет опасности штопора при потере скорости.

» Сборные таблицы, подбор и склеивание необходимых листов карт
Сборные таблицы предназначены для подбора нужных листов карт и быстрого определения их номенклатуры. Они представляют собой схематическую карту мелкого масштаба с обозначенной на ней разграфкой и номенклатурой листов карт одного, а иногда двух-трех масштабов. Для облегчения выбора нужных листов карт на сборных таблицах указаны названия крупных городов. Сборные таблицы издаются на отдельных листах. ...

» Модель планера
Модель планера — конструк­ция,    которая    воспроизводит лишь схему основных частей планера, не копирующая его внешне. Знакомство с моделями пла­неров лучше начать с самой простой модели, изготовленной из бумаги. В практике авиамоделизма ее называют учеб­ной (рис. 16).

» Категории и классы летающих моделей
Основным документом, ре­гламентирующим постройку авиационных летающих моде­лей, своеобразным сводом за­конов являются «Правила про­ведения соревнований по авиа­модельному спорту в СССР». В основе этих Правил — поло­жения кодекса ФАИ — техни­ческие требования к моделям и правила соревнований по ним. В настоящее время в нашей стране распространены сле­дующие категории авиацион­ных моделе ...

» Сущность визуальной ориентировки
Одним из основных правил самолетовождения является непре­рывное сохранение ориентировки в течение всего полета. Сохра­нять ориентировку — это значит в любое время полета знать ме­сто самолета. Местом самолета называется проекция положения самолета в данный момент времени на земную поверхность. Ори­ентировка может осуществляться визуально и при помощи техни­ческих средств самолетовождения.

» Расчет истинной воздушной скорости по узкой стрелке КУС
Узкая стрелка КУС связана с дополнительным механизмом, состоящим из блока анероидных коробок, который автоматически вводит методическую поправку на изменение плотности воздуха с высотой полета, если температура воздуха изменяется с высо­той в соответствии со стандартной атмосферой. Поэтому при тем­пературе на высоте полета, не соответствующей расчетной, узкая стрелка будет указывать истинную скоро ...

 
Наши друзья
Сделай сам своими руками tehnojuk.ru. Техножук от ветродвигателя до рентгеновского аппарата.
 
 Навигационный треугольник скоростей, его элементы и их взаимозависимость
Самолетовождение » Навигационные элементы полета и их расчет  |   Просмотров: 93741  
 
Самолет относительно воздушной массы перемещается с воз­душной скоростью в направлении своей продольной оси. Одно­временно под действием ветра он перемещается вместе с воздуш­ной массой в направлении и со скоростью ее движения. В резуль­тате движение самолета относительно земной поверхности будет происходить по равнодействующей, построенной на слагаемых скоростях самолета и ветра. Таким образом, при полете с боко­вым ветром векторы воздушной скорости, путевой скорости и ско­рости ветра образуют треугольник (рис. 7.3), который называется навигационным треугольником скоростей. Каж­дый вектор характеризуется направлением и величиной.
Вектором воздушной скорости называется направ­ление и скорость движения самолета относительно воздушных масс. Его направление определяется курсом самолета, а величи­на — значением воздушной скорости.
Навигационный треугольник скоростей и его элементы

 
Рис. 7.3. Навигационный треугольник скоростей и его элементы

Вектором путевой скорости называется направление и скорость движения самолета относительно земной поверхности. Его направление определяется путевым углом, а величина — зна­чением путевой скорости.
Вектором ветра называется направление и скорость движения воздушной массы относительно земной поверхности. Его направление определяется направлением ветра, а величина — значением его скорости.
Навигационный треугольник скоростей имеет следующие эле­менты:
МК — магнитный курс самолета;
V — воздушная скорость;
МПУ— магнитный  путевой угол  (может быть заданным —ЗМПУ и фактическим — ФМПУ);
W — путевая скорость;
НВ — навигационное направление ветра;
U — скорость ветра;
УС — угол сноса;
УВ — угол ветра.
Фактическим магнитным путевым углом назы­вается угол, заключенный между северным направлением маг­нитного меридиана и линией фактического пути. Отсчитывается от северного направления магнитного меридиана до линии фак­тического пути по ходу часовой стрелки от 0 до 360°.
Углом сноса называется угол, заключенный между про­дольной осью самолета и линией пути. Отсчитывается от продоль­ной оси самолета до линии пути вправо со знаком плюс и влево со знаком минус.
Углом ветра называется угол, заключенный между линией пути   (фактической или заданной)  и направлением навигационного ветра. Отсчитывается от линии пути до направления ветра по ходу часовой стрелки от 0 до 360°.
Между    элементами   нави­гационного треугольника  ско­ростей существует следующая зависимость:
МК = МПУ - (± УС);  
ОС = V cos УС;
МПУ = МК + (± УС);  
CB = U cos УВ;
УС = МПУ-МК;    W = VсоsУС + UсоsУВ;
УВ = δ ± 180° - МПУ; δ = МПУ + УВ ± 180°.
Так как углы сноса  обычно небольшие,  а  косинусы    малых углов близки к единице, то можно считать, что W ≈ V+UсоsУВ. Приведенные выше формулы используются  для  расчета элемен­тов навигационного треугольника скоростей.
Угол сноса и путевая скорость являются основными нави­гационными элементами, поэтому нужно твердо знать, как они зависят от изменения воздушной скорости, скорости ветра и угла ветра.
Зависимость угла сноса и путевой скорости от воздушной ско­рости самолета. При неизменном ветре и курсе самолета путевая скорость изменяется соответственно изменению воздушной скоро­сти, т. е. с увеличением воздушной скорости путевая скорость ста­новится больше, а с уменьшением — меньше (рис. 7.4). Считают, что изменение воздушной скорости вызывает пропорциональ­ное изменение путевой скорости, т. е. насколько изменилась воз­душная скорость, настолько соответственно изменится и путевая скорость.
 
Зависимость угла сноса и путевой скорости от воздушной ско­рости самолета
 
Угол сноса с возрастанием воздушной скорости уменьшается, а с ее уменьшением — увеличивается.
Зависимость утла сноса и путевой скорости от скорости ветра.
При постоянной воздушной скорости и курсе самолета с увели­чением скорости ветра угол сноса увеличивается, а при ее умень­шении — уменьшается (рис. 7.5).
Путевая скорость при попутном и попутно-боковом ветре с из­менением скорости ветра изменяется так же, как и угол сноса. При встречном и встречно-боковом ветре  с  увеличением  скорости  ветра  путевая  скорость  уменьшается, а с уменьшением —увеличивается.
Зависимость УС и W от изменения скорости ветра
 
 Рис. 7.5. Зависимость УС и W от изменения скорости ветра: а —при попутно-боковом ветре; б —при встречно-боковом ветре

Зависимость угла сноса и путевой скорости от угла ветра. Угол ветра в полете не остается постоянным. Его величина изменяется в полете как вследствие изменения направления вет­ра, так и вследствие изменения направ­ления полета.
Отложим в определенном масштабе вектор воздушной скорости (рис. 7.6).
 
 Зависимость угла сноса и путевой скорости от угла ветра
 
Из конца этого вектора радиусом, рав­ным скорости ветра в том же масштабе, опишем окружность. Если переме­щать вектор ветра по ходу часовой стрелки, то угол ветра будет изме­няться.
Угол сноса и путевая скорость зави­сят от угла ветра следующим образом:
1.  При УВ = 0°     (ветер попутный)
УС=0,W=V+U
2.  При увеличении угла ветра от 0  до 90° угол сноса увеличивается, а пу­тевая скорость уменьшается.
3.  При УВ = 90°  (ветер боковой) угол сноса максимальный, а путевая скорость примерно равна воздушной .
4.  При увеличении УВ от 90 до 180° угол сноса и путевая ско­рость уменьшаются.
5.  При УВ = 180° (ветер встречный) УС==0°, a W=V— U.
6.  При увеличении   УВ от 180 до 270° угол    сноса   и путевая скорость увеличиваются.
7.  При УВ = 270° (ветер боковой) угол сноса максимальный, а путевая скорость примерно равна воздушной.
8.  При увеличении УВ от 270 до 360° угол сноса уменьшается, а путевая скорость увеличивается.
При решении  большинства  навигационных задач  необходимо ясно представлять, в какую сторону при данном угле ветра будет направлен снос самолета и какова его путевая скорость (боль­ше или меньше воздушной).
 
Правила определения W и знаков УС
 
Рис. 7.7. Правила определения W и знаков УС
 
Изменение угла ветра приводит к следующему изменению уг­ла сноса и путевой скорости (рис. 7.7): при углах ветра 0—180° углы сноса положительные, а при углах ветра 180—360° — отри­цательные; путевая скорость при углах ветра 270—0—90° боль­ше воздушной скорости, а при углах ветра 90—180—270° меньше.
Пример. ЗМПУ=100°;  δ=40°.  Определить,  в    какую   сторону   направлен снос самолета и какова его путевая скорость.
Решение.   1. Находим угол ветра:
УВ = δ ± 180° — ЗМПУ = 40° + 180° — 100° = 120°.
2. Определяем знак угла сноса и путевую скорость. Так как УВ в преде­лах от 0 до 180°, то угол сноса будет положительный, а путевая скорость меньше воздушной.
Максимальным называется угол сноса при углах ветра 90 и 270° (см. рис. 7.6). Его величина определятся по формуле
sinУСмакс=U/V
При современных скоростях полета величина угла сноса обыч­но не превышает 10—20°. Известно, что синусы малых углов мож­но принять равными самим углам, выраженным в радианах. 1 рад—57°,3 или округленно 60°.
На основании этого можно записать, что
sinУСмакс= величина угла сноса
Следовательно,
 величина угла сноса=U/V, откуда УСмакс = величина угла сноса
Из формулы видно, что УС тем больше, чем меньше воздуш­ная скорость полета и чем больше скорость ветра.
Пример.  V=360 км/ч; U=60  км/ч.  Определить  максимальный угол сноса.
Решение.              УСмакс =величина угла сноса  =величина угла сноса =10°
Обычно максимальный угол сноса рассчитывается с помощью НЛ-10М (рис. 7.8).
 
максимальный угол сноса

Распечатать ..

 
Другие новости по теме:

  • Решение навигационного треугольника скоростей
  • Учет влияния ветра на полет самолета - Ветер навигационный и метеорологи ...
  • Скорость полета - Воздушная и путевая скорости
  • Состав оборудования системы «Трасса» и принцип работы навигацио ...
  • Основные сведения о НИ-50БМ


  • Rambler's Top100
    © 2009