www.livit.ru
Контакты     |     RSS 2.0
Летательные аппараты » Самолетовождение » Навигационные элементы полета и их расчет » Навигационный треугольник скоростей, его элементы и их взаимозависимость
 
Теория и расчет автожира
Обзор развития автожира
Теория ротора
Аэродинамический расчет
автожира
Устойчивость и балансировка
автожира
 
Строим сами летающие модели
Воздушные змеи
Воздушные шары
Модели планеров
Самолеты с резиновым мотором
Кордовые модели самолетов
Самолеты с электродвигателем
Модели вертолетов
Модели ракет
Организация работы кружка
Советы авиамоделисту
 
Самолетовождение
Сокращенные обозначения
и условные знаки,
принятые в самолетовождении
Основы авиационной картографии
Навигационные элементы полета
и их расчет
Безопасность самолетовождения.
Штурманская подготовка
и правила выполнения полета
Самолетовождение
с использованием угломерных
радиотехнических систем
Самолетовождение
с использованием
радиолокационных
и навигационных систем
Полеты в особых условиях
 
Партнеры
 
Наш опрос
Построили ли Вы что нибудь сами?

Модель самолета
Модель вертолета
Воздушный шар
Модель ракеты
Воздушного змея
Самолет
Вертолет
Автожир

 
Строительное оборудование
Тепловые Пушки от сайта бесплатных объявлений
 
Архив новостей
Февраль 2016 (294)
 
Статьи
» Карты, применяемые в авиации - Назначение карт
В авиации карты используются как при подготовке к полету, так и в процессе полета. При подготовке к полету карта необходима в целях: 1)   прокладки и изучения маршрута полёта; 2)   измерения путевых углов и   расстояний    между   пунктами маршрута; 3)   определения географических координат пунктов; 4)   нанесения точек расположения радиотехнических    средств, обеспечивающих полет; 5)   получения ...

» Определение значений тригонометрических функций углов
Значения синуса и косинуса данного угла α на НЛ-10М опре­деляются по шкалам 3 и 5, значения тангенса и котангенса — по шкалам 4 и 5. Чтобы определить синус и косинус данного угла, необходимо 90° шкалы 3 или треугольный индекс шкалы 4 установить на де­ление 100 шкалы 5 и с помощью риски визирки отсчитать против значения данного угла α шкалы 3 по шкале 5 искомое значение синуса (в ...

» Расчет показания широкой стрелки КУС для заданной истинной скорости
Приборная скорость для широкой стрелки КУС рассчитывает­ся по формуле V пр = V и-(± Δ V м)-(-Δ V сж)-(± Δ V а)-(± Δ V). Пример Н760пр= 6600 м; Vи = 500 км/ч; температура воздуха на высоте по­лета tн= —40°; ΔV= +5 км/ч; ΔVа= —18 км/ч; Δ Vсж= —5 км/ч. Определить приборную скорость для широкой стрелки КУС.

» Особенности самолетовождения в условиях грозовой деятельности
Условия   самолетовождения    в   зоне  грозовой    деятельности. Грозы являются опасными явлениями погоды для авиации. Опас­ность полетов в условиях грозовой деятельности связана с силь­ной турбулентностью воздуха и возможностью попадания мол­нии в самолет, что может вызвать его повреждение, поражение экипажа и вывод из строя оборудования. Наиболее опасными являются фронтальные грозы, которые ох­ ...

» Классификация авиационных карт по назначению
По своему назначению карты, применяемые в гражданской - авиации, делятся: на полетные, применяемые для самолетовождения по трас­сам и маршрутам в районе полетов; на бортовые, применяемые в полете для определения места самолета при помощи использования радиотехнических и астроно­мических средств; на специальные (карты магнитных склонений, часовых поясов, бортовые карты неба, карты для определения м ...

» Ошибки барометрических высотомеров
Барометрические высотомеры имеют инструментальные, аэро­динамические и методические ошибки. Инструментальные ошибки высотомера ΔН возникают вследствие несовершенства изготовления прибора и неточности его регулировки. Причинами инструментальных ошибок являются несовершенства изготовления механизмов высотомера, износ де­талей, изменение упругих свойств анероидной коробки, люфты и т. д. Каждый ...

» Пилотажный электролет
Тем, кому работа над моде­лями с электродвигателем по­кажется интересной, предла­гаем построить «пилотажку» (рис. 47), разработанную Ю. Павловым. Эта модель несколько сложнее описанных ранее, но и возможности ее шире, да и энерговооружен­ность выше. Подкупает и внеш­няя форма модели, напоми­нающая настоящий самолет. Крыло склеивают из плас­тин упаковочного пенопласта. Можно также вырезать его из ц ...

» Самолетовождение с использованием радиокомпаса - Задачи самолетовождения, решаемые с помощью радиоко ...
Автоматический радиокомпас (АРК) является приемным уст­ройством направленного действия, позволяющим определять на­правление на  передающую радиостанцию. АРК совместно с при­водными и радиовещательными станциями относится к угломер­ным системам самолетовождения.

» Метательные модели плане­ров
За последние несколько лет во многих странах (особенно в ЧССР) широкое распростра­нение получили метательные модели. Небольшие, размахом около полуметра и массой 25 — 30 г, они производят впечатление игрушек. Но их летные ка­чества лучше, чем у бумажных предшественников. Запускае­мые вверх резким броском руки, они способны на стремительный старт. Для них не предел 10 — 15.м высоты, наб ...

» Ошибки указателя воздушной скорости
Указатель воздушной скорости имеет инструментальные, аэро­динамические и методические ошибки. Инструментальные ошибки ΔV возникают по тем же причинам, что и аналогичные ошибки высотомера. Они определяются путем сличения показаний указателя скорости с показания­ми точно выверенного прибора, заносятся в график или таблицу и учитываются при расчете скорости.

» Прямоугольный коробчатый змей Л. Харграва
Прямоугольный коробчатый змей Л. Харграва (рис. 5). В конце XIX века австралий­ский ученый Лоуренс Харграв впервые предложил конструк­цию змея-биплана, обладаю­щего значительной грузо­подъемностью. Обтяжку змея делают из двух полос лавсановой пленки или кальки, приклеенных по краям к рейкам каркаса. Подойдет для обтяжки и полиэтиленовая пленка. Всего потребуется два чиста длиной 1300 мм и шири-ной ...

» Использование навигационного индикатора НИ-50БМ - Назначение НИ-50БМ и задачи, решаемые с его помощь ...
Одной из важнейших задач, выполняемых экипажем самоле­та в полете, является сохранение ориентировки. Ее решение до­стигается периодическим определением места самолета визуальной ориентировкой и с помощью различных радиотехнических средств. При полетах на больших высотах и в сложных метеоусловиях ви­зуальную ориентировку не всегда можно применить, а определе­ние места самолета с помощью радиотехнич ...

» Учебная пилотажная мо­дель «Тренер»
Учебная пилотажная мо­дель «Тренер» (рис. 34) помо­жет освоить фигуры пилотаж­ного комплекса — прямые и обратные петли, поворот на горке и перевернутый полет (полет «на спине»). Конструктор данной модели В. Кибец при ее конструировании зало­жил такие основные требо­вания — наименьшая возмож­ная масса, относительная про­стота изготовления и хорошая технологичность. Изготовление модели н ...

» Использование НИ-50БМ при обходе гроз
При обходе гроз на маршруте полета НИ-50БМ может исполь­зоваться для контроля за положением самолета относительно маршрута и для обратного выхода на ЛЗП (рис. 19.8).

» Определение остаточной радиодевиации и составление графика радиодевиации
Остаточная радиодевиация определяется с целью обнаружения ошибок и неточностей, допущенных в процессе выявления и ком­пенсации радиодевиации. Для определения остаточной радиодевиации самолет последо­вательно устанавливается на 24 ОРК, на каждом ОРК определяет­ся КУР и вычисляется радиодевиация, которая записывается в протокол. Радиодевиация считается скомпенсированной, если на КУР = 0° она равна н ...

» Расчет времени и места набора высоты заданного эшелона
Набор высоты заданного эшелона, как правило, выполняется по трассе полета. Поэтому штурман должен знать, в какое вре­мя будет набрана заданная  высота  полета.  Время  набора  высоты рассчитывается по высотенабора и вертикальной скорости на­бора. Вертикальной скоростью набора VB называется вертикальная составляющая скорости воздушного судна. Рис. 5.5. Определение времени и места набора высоты ...

» Установка самолета на заданный магнитный курс
Для определения девиации компаса необходимо знать, каков магнитный курс самолета, и сравнить его значение с компасным курсом, так как Δк = МК - КК. Самолет устанавливается на заданный МК: 1)   пеленгованием продольной оси самолета; 2)   по магнитному пеленгу ориентира.

» Ромбический коробчатый змей
Ромбический коробчатый змей (рис. 6) выполнен по схеме Потера. От предыдущего он отличается большими размера­ми (длина 1,6 м, ширина 2 м) и более сложной конструкцией, Для увеличения подъемной си­лы змей-великан (назовем его так) снабжен открылками, что придает сходство с первыми са­молетами. Каркас змея делают из сос­новых реек сечением 15Х 15 мм. Подойдут также бамбуковые палки, дюралюминиевые т ...

» Ракетомодельный спорт
В ракетомодельном спорте, также как и в авиамодельном, правила соревнований вырабатывает соответствующая меж­дународная федерация. Нацио­нальные федерации, принимая свой спортивный кодекс, стара­ются дублировать международ­ные правила — раздел «Косми­ческие модели» кодекса ФАИ. Но каждая страна вправе внес­ти какие-либо нововведения, уточнения, не изменяя при этом основополагающие требования ...

» Тепловой воздушный шар
Так уж распорядилась исто­рия, что летательным аппара­том, на котором был осуществ­лен первый полет человека, явился тепловой воздушный шар. Давно замечено, что вверх поднимается и дым и нагретый воздух. Первые попытки постро­йки и полеты на тепловом шаре относятся к середине XVIII ве­ка. Но достоверность этих фак­тов пока не подтверждена до­кументально. Одними из первых, кто хотел использовать те ...

» Устройство управляемой ракеты
Несмотря на большое раз­нообразие, все ракеты имеют много общего в своем устрой­стве. Основными частями управляемой ракеты являются полезный груз, корпус, двига­тель, бортовая аппаратура си­стемы управления, органы управления и источники энер­гии. Полезный груз — объект для проведения иссле­дований или других работ, размещается в головном от­секе и прикрывается головным обтекателем. Корпус р ...

» Полеты по ортодромии - Необходимость полета по ортодромии
В гражданской авиации имеются самолеты, обладающие боль­шой дальностью полета. На таких Самолетах совершаются регу­лярные полеты по трансконтинентальным и межконтинентальным авиалиниям. Эти самолеты имеют специальное оборудование, поз­воляющее выполнять полеты по ортодромии. Необходимость пере­хода к полетам по ортодромии вызвана требованием повышения точности самолетовождения.

» Контроль пути по дальности с помощью боковых радиостанций
Контроль пути по дальности заключается в определении прой­денного от КО или оставшегося до заданного пункта расстояния. С помощью боковых радиостанций эта задача решается следую­щими способами: 1)   пеленгованием   боковой радиостанции и прокладкой ИПС на карте; 2)   выходом на предвычисленный КУР или МПР; 3)   выходом на траверз боковой радиостанции.

» Радионавигационные элементы - Общая характеристика и виды радиотехнических систем
Радиотехнические средства среди других средств самолетово­ждения занимают одно из важнейших мест и находят самое ши­рокое применение. В комплексе с другими средствами они при умелом использовании обеспечивают надежное и точное самоле­товождение. Радиотехнические средства самолетовождения по месту рас­положения делятся на наземные и самолетные. К наземным радиотехническим средствам относятся: при­в ...

» Категории и классы летающих моделей
Основным документом, ре­гламентирующим постройку авиационных летающих моде­лей, своеобразным сводом за­конов являются «Правила про­ведения соревнований по авиа­модельному спорту в СССР». В основе этих Правил — поло­жения кодекса ФАИ — техни­ческие требования к моделям и правила соревнований по ним. В настоящее время в нашей стране распространены сле­дующие категории авиацион­ных моделе ...

» Выход на конечный пункт маршрута
Выход на КПМ должен быть выполнен точно по месту и вре­мени. Это исключает необходимость выполнения маневра для поис­ка аэродрома посадки и обеспечивает безопасность самолетовожде­ния. Выход на КПМ осуществляется: 1)  визуально или по бортовому радиолокатору; 2)  по компасу и расчетному времени; 3) при помощи радионавигационных, радиолокационных и светотехнических средств, расположенных в пункте н ...

» Основные правила самолетовождения - Порядок выполнения маршрутного полета
Полеты самолетов гражданской авиации из одного пункта в другой выполняются по воздушным трассам, местным воздушным линиям, а вне трасс и воздушных линий — только по установлен­ным маршрутам. В основе успешного выполнения полетов лежит строгое соблю­дение установленных правил самолетовождения. Они обязывают экипаж самолета при выполнении любых полетов: 1)   сохранять ориентировку в течение вс ...

» Способы определения путевой скорости в полете
Путевая скорость в полете может быть определена одним из следующих способов:1)   по  известному  ветру   (на НЛ-10М,  расчетчике,  ветрочете и в уме);2)   по  времени пролета известного   расстояния   (по отметкам места самолета);3) по времени пролета расстояния, определяемого с помощью самолетного  радиолокатора или радиотехнических систем;4)   по высоте полета и времени пробега визирной точкой и ...

» Контроль и исправление пути
При выполнении полета вследствие изменения ветра, неточного выдерживания заданного режима полета и ошибок в навигацион­ных измерениях и расчетах самолет может уклониться от ЛЗП и выйти на заданные пункты маршрута в неназначенное время. В целях точного следования по заданной трассе (маршруту) и точного по времени выхода на контрольные ориентиры, поворот­ные пункты и аэродром посадки, экипаж в проце ...

» Классификация ориентиров и их главные отличительные признаки
Визуальная ориентировка ведется по земным ориентирам. Ори­ентирами называются все объекты на земной поверхности или отдельные ее характерные участки, выделяющиеся на общем лан­дшафте местности, изображенные на карте и видимые с самолета. Они могут использоваться для определения места самолета. Ориентиры подразделяются на линейные, площадные и то­чечные.

 
Наши друзья
Сделай сам своими руками tehnojuk.ru. Техножук от ветродвигателя до рентгеновского аппарата.
 
 Навигационный треугольник скоростей, его элементы и их взаимозависимость
Самолетовождение » Навигационные элементы полета и их расчет  |   Просмотров: 84280  
 
Самолет относительно воздушной массы перемещается с воз­душной скоростью в направлении своей продольной оси. Одно­временно под действием ветра он перемещается вместе с воздуш­ной массой в направлении и со скоростью ее движения. В резуль­тате движение самолета относительно земной поверхности будет происходить по равнодействующей, построенной на слагаемых скоростях самолета и ветра. Таким образом, при полете с боко­вым ветром векторы воздушной скорости, путевой скорости и ско­рости ветра образуют треугольник (рис. 7.3), который называется навигационным треугольником скоростей. Каж­дый вектор характеризуется направлением и величиной.
Вектором воздушной скорости называется направ­ление и скорость движения самолета относительно воздушных масс. Его направление определяется курсом самолета, а величи­на — значением воздушной скорости.
Навигационный треугольник скоростей и его элементы

 
Рис. 7.3. Навигационный треугольник скоростей и его элементы

Вектором путевой скорости называется направление и скорость движения самолета относительно земной поверхности. Его направление определяется путевым углом, а величина — зна­чением путевой скорости.
Вектором ветра называется направление и скорость движения воздушной массы относительно земной поверхности. Его направление определяется направлением ветра, а величина — значением его скорости.
Навигационный треугольник скоростей имеет следующие эле­менты:
МК — магнитный курс самолета;
V — воздушная скорость;
МПУ— магнитный  путевой угол  (может быть заданным —ЗМПУ и фактическим — ФМПУ);
W — путевая скорость;
НВ — навигационное направление ветра;
U — скорость ветра;
УС — угол сноса;
УВ — угол ветра.
Фактическим магнитным путевым углом назы­вается угол, заключенный между северным направлением маг­нитного меридиана и линией фактического пути. Отсчитывается от северного направления магнитного меридиана до линии фак­тического пути по ходу часовой стрелки от 0 до 360°.
Углом сноса называется угол, заключенный между про­дольной осью самолета и линией пути. Отсчитывается от продоль­ной оси самолета до линии пути вправо со знаком плюс и влево со знаком минус.
Углом ветра называется угол, заключенный между линией пути   (фактической или заданной)  и направлением навигационного ветра. Отсчитывается от линии пути до направления ветра по ходу часовой стрелки от 0 до 360°.
Между    элементами   нави­гационного треугольника  ско­ростей существует следующая зависимость:
МК = МПУ - (± УС);  
ОС = V cos УС;
МПУ = МК + (± УС);  
CB = U cos УВ;
УС = МПУ-МК;    W = VсоsУС + UсоsУВ;
УВ = δ ± 180° - МПУ; δ = МПУ + УВ ± 180°.
Так как углы сноса  обычно небольшие,  а  косинусы    малых углов близки к единице, то можно считать, что W ≈ V+UсоsУВ. Приведенные выше формулы используются  для  расчета элемен­тов навигационного треугольника скоростей.
Угол сноса и путевая скорость являются основными нави­гационными элементами, поэтому нужно твердо знать, как они зависят от изменения воздушной скорости, скорости ветра и угла ветра.
Зависимость угла сноса и путевой скорости от воздушной ско­рости самолета. При неизменном ветре и курсе самолета путевая скорость изменяется соответственно изменению воздушной скоро­сти, т. е. с увеличением воздушной скорости путевая скорость ста­новится больше, а с уменьшением — меньше (рис. 7.4). Считают, что изменение воздушной скорости вызывает пропорциональ­ное изменение путевой скорости, т. е. насколько изменилась воз­душная скорость, настолько соответственно изменится и путевая скорость.
 
Зависимость угла сноса и путевой скорости от воздушной ско­рости самолета
 
Угол сноса с возрастанием воздушной скорости уменьшается, а с ее уменьшением — увеличивается.
Зависимость утла сноса и путевой скорости от скорости ветра.
При постоянной воздушной скорости и курсе самолета с увели­чением скорости ветра угол сноса увеличивается, а при ее умень­шении — уменьшается (рис. 7.5).
Путевая скорость при попутном и попутно-боковом ветре с из­менением скорости ветра изменяется так же, как и угол сноса. При встречном и встречно-боковом ветре  с  увеличением  скорости  ветра  путевая  скорость  уменьшается, а с уменьшением —увеличивается.
Зависимость УС и W от изменения скорости ветра
 
 Рис. 7.5. Зависимость УС и W от изменения скорости ветра: а —при попутно-боковом ветре; б —при встречно-боковом ветре

Зависимость угла сноса и путевой скорости от угла ветра. Угол ветра в полете не остается постоянным. Его величина изменяется в полете как вследствие изменения направления вет­ра, так и вследствие изменения направ­ления полета.
Отложим в определенном масштабе вектор воздушной скорости (рис. 7.6).
 
 Зависимость угла сноса и путевой скорости от угла ветра
 
Из конца этого вектора радиусом, рав­ным скорости ветра в том же масштабе, опишем окружность. Если переме­щать вектор ветра по ходу часовой стрелки, то угол ветра будет изме­няться.
Угол сноса и путевая скорость зави­сят от угла ветра следующим образом:
1.  При УВ = 0°     (ветер попутный)
УС=0,W=V+U
2.  При увеличении угла ветра от 0  до 90° угол сноса увеличивается, а пу­тевая скорость уменьшается.
3.  При УВ = 90°  (ветер боковой) угол сноса максимальный, а путевая скорость примерно равна воздушной .
4.  При увеличении УВ от 90 до 180° угол сноса и путевая ско­рость уменьшаются.
5.  При УВ = 180° (ветер встречный) УС==0°, a W=V— U.
6.  При увеличении   УВ от 180 до 270° угол    сноса   и путевая скорость увеличиваются.
7.  При УВ = 270° (ветер боковой) угол сноса максимальный, а путевая скорость примерно равна воздушной.
8.  При увеличении УВ от 270 до 360° угол сноса уменьшается, а путевая скорость увеличивается.
При решении  большинства  навигационных задач  необходимо ясно представлять, в какую сторону при данном угле ветра будет направлен снос самолета и какова его путевая скорость (боль­ше или меньше воздушной).
 
Правила определения W и знаков УС
 
Рис. 7.7. Правила определения W и знаков УС
 
Изменение угла ветра приводит к следующему изменению уг­ла сноса и путевой скорости (рис. 7.7): при углах ветра 0—180° углы сноса положительные, а при углах ветра 180—360° — отри­цательные; путевая скорость при углах ветра 270—0—90° боль­ше воздушной скорости, а при углах ветра 90—180—270° меньше.
Пример. ЗМПУ=100°;  δ=40°.  Определить,  в    какую   сторону   направлен снос самолета и какова его путевая скорость.
Решение.   1. Находим угол ветра:
УВ = δ ± 180° — ЗМПУ = 40° + 180° — 100° = 120°.
2. Определяем знак угла сноса и путевую скорость. Так как УВ в преде­лах от 0 до 180°, то угол сноса будет положительный, а путевая скорость меньше воздушной.
Максимальным называется угол сноса при углах ветра 90 и 270° (см. рис. 7.6). Его величина определятся по формуле
sinУСмакс=U/V
При современных скоростях полета величина угла сноса обыч­но не превышает 10—20°. Известно, что синусы малых углов мож­но принять равными самим углам, выраженным в радианах. 1 рад—57°,3 или округленно 60°.
На основании этого можно записать, что
sinУСмакс= величина угла сноса
Следовательно,
 величина угла сноса=U/V, откуда УСмакс = величина угла сноса
Из формулы видно, что УС тем больше, чем меньше воздуш­ная скорость полета и чем больше скорость ветра.
Пример.  V=360 км/ч; U=60  км/ч.  Определить  максимальный угол сноса.
Решение.              УСмакс =величина угла сноса  =величина угла сноса =10°
Обычно максимальный угол сноса рассчитывается с помощью НЛ-10М (рис. 7.8).
 
максимальный угол сноса

Распечатать ..

 
Другие новости по теме:

  • Решение навигационного треугольника скоростей
  • Учет влияния ветра на полет самолета - Ветер навигационный и метеорологи ...
  • Скорость полета - Воздушная и путевая скорости
  • Состав оборудования системы «Трасса» и принцип работы навигацио ...
  • Основные сведения о НИ-50БМ


  • Rambler's Top100
    © 2009